专注论文查重修改6年+经验

整合规範焦点与人口迁移理论 探讨使用者于智慧型手机平台上之转换意图

【中文摘要】:智慧型手机已经变成了现代人日常生活中不可或缺的一部分,而许多与智慧型手机相关的议题也在近几年中被广泛讨论与研究,像是智慧型手机成瘾、隐私与安全、以及转换行为等等。此外,使用者的

szwox.com_133
心理态度与倾向,也是影响消费者行为的一个重要因素,但在先前与资讯产品或服务相关的研究中,却很少讨论到这个部分。而本研究结合了人口迁移理论中的Push-Pull-Mooring (PPM) Model与广泛应用在各领域的调节焦点理论(Regulatory Focus Theory)来探讨使用者于智慧型手机上的转换行为。

本研究透过调节焦点理论,将使用者分成比较正向思考、勇于承担风险(促进焦点,Promotion Focus)、以及负面思考、较为风险趋避(预防焦点,Prevention Focus)的两种心理特质,并探讨这两种不同的心理特质对于PPM Model中的推力(Push Effect)、拉力(Pull Effect)、以及繫留力(Mooring Effect)分别有什幺样的调节效果。除了能结合心理层面这个在使用者行为上很重要、却一直被大家所忽略的影响因素,来补齐相关理论与研究上的缺陷外,也能在实务上为使用者在资讯产品上的转换行为,提供另一个不同的观点。

本研究使用实证研究方式,于台湾共收集了682份来自使用者自行填写的有效样本来验证本研究所提出的假说。研究结果指出促进焦点(Promotion Focu

文懂论文网,论文查重最佳选择,立即论文查重,马上防止抄袭,提高论文品质

s)的智慧型手机使用者,对于替代产品的拉力(Pull Effect)与转换意图间的关係有更显着的影响;而预防焦点(Prevnetion Focus)的智慧型手机使用者,则对于现有产品的推力(Push Effect)与转换意图间的关係有显着影响。研究成果除了支持我们一开始提出的研究假说,也在使用者对于资讯产品的转换意图上,提供了学术界与实务界另一个全新的认知。
【英文摘要】:Nowadays, smartphones are used in more and more scenarios, and become a necessary part of our daily life. Hence, smartphones and other related issues have been widely discussed, such as smartphone addiction, privacy and security, and switching behavior. Furthermore, user’s attitude and psychological traits are also crucial factors in consumer’s behavior, but these parts are less discussed in previous literature of IT products and services. As a result, this research purpose is to explore users’ switching intention on smartphone platforms through Push-Pull-Mooring Model and Regulatory Focus Theory.

There are three factors – push effect, pull effect, and mooring effect, which influencing the switching intention in the Push-Pull-Mooring Model, and two different tendencies of psychological states in Regulatory Focus Theory – promotion focus, and prevention focus. So the researcher would like to know whether different influences of push, pull, and mooring effects on different users with either promotion or prevention focus on smartphones.

The researcher collected 682 valid samples in Taiwan for examining the hypotheses in this study. The analyses indicate that there is significant relation between pull effect and switching intention on promotion smartphone users, and significant relation between push effect an

毕业论文查重去哪里?文懂论文查重一站式服务,全球8大论文检测系统帮你杜绝防抄袭,提高论文原创水品。

d switching intention on prevention smartphone users. The re-sults of this research not only support the hypotheses we proposed, but also provide a novel perspective on IT product switching in both theoretical and practical.
【参考文献】:

  • Aaker, J. L., & Lee, A. Y. (2001). "I" seek pleasures and "We" avoid pains: The role of self-regulatory goals in information processing and persuasion. Journal of Con-sumer Research, 28, 33–49. doi:10.1086/321946
  • Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204–215. doi: 10.1287/isre.9.2.204
  • Ahn, J., & Han, R. (2012). An indoor augmented-reality evacuation system for the smartphone using personalized pedometry. Human-centric Computing Infor-mation Science, 2(1), 18. doi: 10.1186/2192-1962-2-18
  • Ahn, T., Ryu S., & Han, I. (2007). The impact of web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263–275. doi: 10.1016/j.im.2006.12.008
  • Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior (Pbk. Ed.). Englewood Cliffs, N.J.: Prentice-Hall.
  • Allam, S., Flowerday, S. V., & Flowerday, E. (2014). Smartphone information security awareness: A victim of operational pressures. Computers & Security, 42, 56–65. doi: 10.1016/j.cose.2014.01.005
  • Amodio, D. M., Shah, J. Y., Sigelman, J., Brazy, P. C., & Harmon-Jones, E. (2004). Im-plicit regulatory focus associated with asymmetrical frontal cortical activity. Journal of Experimental Social Psychology, 40(2), 225–232. doi: 10.1016/S0022-1031(03)00100-8
  • Anderson, E. W., Fornell, C., & Lehmann, D. R. (1994). Customer satisfaction, market share, and profitability: Findings from Sweden. Journal of Marketing, 58(3), 53–66.
  • Anderson, E. W. & Sullivan, M. W. (1993). The antecedents and consequences of cus-tomer satisfaction for firms. Marketing Science, 12(2), 125–143. doi: 10.1287/mksc.12.2.125
  • Andrews, L., Drennan, J., & Russell-Bennett, R. (2012). Linking perceived value of mobile marketing with the experiential consumption of mobile phones. European Journal of Marketing, 46(3/4), 357–386. doi: 10.1108/03090561211202512
  • Antón, C., Camarero, C., & Carrero, M. (2007). Analysing firms” failures as determi-nants of consumer switching intentions: The effect of moderating factors. Euro-pean Journal of Marketing, 41(1/2), 135–158. doi: 10.1108/03090560710718157
  • Appelt, K. C., Zou, X., Arora, P., & Higgins, E. T. (2009). Regulatory fit in negotiation: effects of “prevention-buyer” and “promotion-seller” fit. Social Cognition, 27(3), 365–384. doi: 10.1521/soco.2009.27.3.365
  • Arkes, H. R., & Ayton, P. (1999). The sunk cost and concorde effects: Are humans less rational than lower animals?. Psychological Bulletin, 125(5), 591–600. doi: 10.1037/0033-2909.125.5.591
  • Avolio, B. J., Waldman, D. A., & Yammarino, F. J. (1991). Leading in the 1990s: the four I”s of transformational leadership, Journal of European Industrial Training, 15(4), 9–16. doi: 10.1108/03090599110143366
  • Baek, K., Holton, A., Harp, D., & Yaschur, C. (2011). The links that bind: Uncovering novel motivations for linking on Facebook. Computers in Human Behavior, 27(6), 2243–2248. doi: 10.1016/j.chb.2011.07.003
  • Balakrishnan, V., & Raj, R. G. (2012). Exploring the relationship between urbanized Malaysian youth and their mobile phones: A quantitative approach. Telematics & Informatics, 29(3), 263–272. doi: 10.1016/j.tele.2011.11.001
  • Balasubramanian, S., Peterson, R. A., & Jarvenpaa, S. L. (2002). Exploring the implica-tions of m-commerce for markets and marketing. Journal of the Academy of Marketing Science, 30(4), 348–361. doi: 10.1177/009207002236910
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. N.J.: Prentice Hall.
  • Bansal, H. S., & Taylor, S. F. (1999a). Beyond service quality and customer satisfaction: Investigating additional antecedents of service-provider switching intentions. In Developments in Marketing Science, vol. 22, Ed. Charles H. Noble. Coral Gables, FL: Academy of Marketing Science, 75–82.
  • Bansal, H. S., & Taylor, S. F. (1999b). The service-provider switching model (SPSM): A model of consumer switching behavior in the services industry. Journal of Ser-vice Research, 2(2), 200–218. doi: 10.1177/109467059922007
  • Bansal, H. S., Taylor, S. F., & James, Y. S. (2005). ’Migrating” to new service providers: toward a unifying framework of consumers’ switching behaviors. Journal of the Academy of Marketing Science, 33(1), 96–115. doi: 10.1177/0092070304267928
  • Bao, Y., Xiong, T., Hu, Z., & Kibelloh, M. (2013). Exploring gender differences on gen-eral and specific computer self-efficacy in mobile learning adoption. Journal of Educational Computing Research, 49(1), 111–132. doi: 10.2190/EC.49.1.e
  • Baumgartner, H., & Steenkamp, J. B. (1996). Exploratory consumer buying behavior: Conceptualization and measurement. Internatinational Journal of Research in Marketing, 13(2), 121–137. doi: 10.1016/0167-8116(95)00037-2
  • Bell, S. J., Auh, S., & Smalley, K. (2005). Customer relationship dynamics: Service quality and customer loyalty in the context of varying levels of customer exper-tise and switching costs. Journal of the Academy of Marketing Science, 33(2), 169–183. doi: 10.1177/0092070304269111
  • Benson, D. H. (1983). A field study of end user computing: Findings and issues. MIS Quarterly, 7(4), 35–45. doi: 10.2307/248745
  • Beranuy, M., Oberst, U., Carbonell, X., & Chamarro, A. (2009). Problematic internet and mobile phone use and clinical symptoms in college students: The role of emotional intelligence. Computers in Human Behavior, 25(5), 1182–1187. doi: 10.1016/j.chb.2009.03.001
  • Berry, L. L., Seiders, K., & Grewal, D. (2002). Understanding service convenience. Journal of Marketing, 66(3), 1–17. doi: 10.1509/jmkg.66.3.1.18505
  • Bhattacherjee, A. (2001). Understanding Information Systems Continuance: An Expec-tation-Confirmation Model. MIS Quarterly, 25(3), 351–370. doi: 10.2307/3250921
  • Bhattacherjee, A., Limayem, M. & Cheung, C. M. (2012). User switching of infor-mation technology: A theoretical synthesis and empirical test. Information & Management, 49(7–8), 327–333. doi: 10.1016/j.im.2012.06.002
  • Bianchi, A., & Phillips, J. G. (2005). Psychological predictors of problem mobile phone use. CyberPsychology Behavior, 8(1), 39–51. doi: 10.1089/cpb.2005.8.39
  • Billieux, J., Linden, M. V., D’acremont, M., Ceschi, G., & Zermatten, A. (2007). Does impulsivity relate to perceived dependence on and actual use of the mobile phone?. Applied Cognitive Psychology, 21(4), 527–537. doi: 10.1002/acp.1289
  • Blut, M., Beatty, S. E., Evanschitzky, H., & Brock, C. (2014). The Impact of Service Characteristics on the Switching Costs–Customer Loyalty Link. Journal of Re-tailing, 90(2), 275–290. doi: 10.1016/j.jretai.2014.04.003
  • Bogue, D. J. (1969). Principles of demography, New York: Wiley.
  • Bolton, R. N., Kannan, P. K., & Bramlett, M. D. (2000). Implications of loyalty pro-gram membership and service experiences for customer retention and value. Journal of the Academy of Marketing Science, 28(1), 95–108. doi: 10.1177/0092070300281009
  • Borland, J. (2005). Firefox passes 50 million download mark. CNET News. Retrieved June 22, 2014, from http://news.cnet.com/Firefox-passes-50-million-download-mark/2100-1032_3-5690558.html
  • Bosmans, A., & Baumgartner, H. (2005). Goal-relevant emotional information: When extraneous affect leads to persuasion and when it does not. Journal of Consumer Research, 32(3), 424–434. doi: 10.1086/497554
  • Boyle, P. J., Halfacree, K., & Robinson, V. (1998). Exploring Contemporary Migration. New York: Longman.
  • Brady, M. K., & Cronin, J. J. (2001). Some new thoughts on conceptualizing perceived service quality: A hierarchical approach. Journal of Marketing, 65(3), 34–49. doi: 10.1509/jmkg.65.3.34.18334
  • Bryant, P. (2007). Self-regulation and decision heuristics in entrepreneurial opportunity evaluation and exploitation. Management Decision, 45(4), 732–748. doi: 10.1108/00251740710746006
  • Bryant, P. (2009). Self-regulation and moral awareness among entrepreneurs. Journal of Business Venturing, 24(5), 505–518. doi: 10.1016/j.jbusvent.2008.04.005
  • Bryant, P., & Dunford, R. (2008). The influence of regulatory focus on risky deci-sion-making. Applied Psychology, 57(2), 335–359. doi: 10.1111/j.1464-0597.2007.00319.x
  • Bulgurcu, B., Cavusoglu, H., & Benbasat, I. (2010). Information security policy com-pliance: an empirical study of rationality-based beliefs and information security awareness. MIS Quarterly, 34(3), 523–548.
  • Burton, F. G., Chen, Y. N., Grover, V., & Stewart, K. A. (1992). An application of ex-pectancy theory for assessing user motivation to utilize an expert system. Journal of Management Information Systems, 9(3), 183–198.
  • Butt, S., & Phillips, J. G. (2008). Personality and self-reported mobile phone use. Com-puters in Human Behavior, 24(2), 346–360. doi: 10.1016/j.chb.2007.01.019
  • Camarero, C., Antón, C., & Carrero, M. (2010). Relationship exit in different legal en-vironments: a cross-cultural analysis. The Service Industries Journal, 30(9), 1457–1478. doi: 10.1080/02642060802621460
  • Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81–105. doi: 10.1037/h0046016
  • Campbell, S. W., & Kwak, N. (2010). Mobile communication and social capital: An analysis of geographically differentiated usage patterns. New Media & Society, 12(3), 435–451. doi: 10.1177/1461444809343307
  • Capraro, A. J., Broniarczyk, S., & Srivastava, R. K. (2003). Factors Influencing the Likelihood of Customer Defection: The Role of Consumer Knowledge. Journal of the Academy of Marketing Science, 31(2), 164–175. doi: 10.1177/0092070302250900
  • Cesario, J., Grant, H., & Higgins, E. T. (2004). Regulatory fit and persuasion: transfer from “Feeling Right”. Journal of Personality and Social Psychology, 86(3), 388–404. doi: 10.1037/0022-3514.86.3.388
  • Champion, T. & Fielding, T. (1992). Editorial Introduction. In Migration Processes and Patterns, Vol. 1: Research Progress and Prospects. Eds. T. Champion and T. Fielding. London: Belhaven Press, 1–14.
  • Chan, S. H. (2009). The roles of user motivation to perform a task and decision support system (DSS) effectiveness and efficiency in DSS use. Computers in Human Behavior, 25(1), 217–228. doi: 10.1016/j.chb.2008.09.002
  • Chang, I. C., Liu, C. C., & Chen, K. (2013). The push, pull and mooring effects in vir-tual migration for social networking sites. Information Systems Journal, 24(4), 323–346. doi: 10.1111/isj.12030
  • Chatterjee, S., Malshe, A. V., & Heath, T. B. (2010). The effect of mixed versus blocked sequencing of promotion and prevention features on brand evaluation: The moderating role of regulatory focus. Journal of Business Research, 63(12), 1290–1294. doi: 10.1016/j.jbusres.2009.09.003
  • Chaudhuri, A., & Holbrook, M. B. (2001). The chain of effects from brand trust and brand affect to brand performance: The role of brand loyalty. Journal of Mar-keting, 65(2), 81–93. doi: 10.1509/jmkg.65.2.81.18255
  • Chen, P. Y., & Hitt, L. M. (2002). Measuring Switching Costs and the Determinants of Customer Retention in Internet-enabled Businesses: A study of the Online Bro-kerage Industry. Information Systems Research, 13(3), 255–274. doi: 10.1287/isre.13.3.255.78
  • Cheong, S. N., Ling, H. C., & Teh, P. L. (2014). Secure encrypted steganography graph-ical password scheme for near field communication smartphone access control system. Expert Systems with Applications, 41(7), 3561–3568. doi: 10.1016/j.eswa.2013.10.060
  • Chhablani, J., Kaja, S., & Shah, V. A. (2012). Smartphones in ophthalmology. Indian Journal of Ophthalmology, 60(2), 127–131. doi: 10.4103/0301-4738.94054
  • Chin, W. W., Gopal, A., & Salisbury, W. D. (1997). Advancing the theory of adaptive structuration: The development of a scale to measure faithfulness of appropria-tion. Information Systems Research, 8(4), 342–367. doi:10.1287/isre.8.4.342
  • Chin, W. W., Marcolin, B. L., & Newsted, P. R., (2003). A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Information System Research, 14(2), 189–217. doi: 10.1287/isre.14.2.189.16018
  • Chiou, J. S. (2004). The Antecedents of Consumers” Loyalty toward Internet Service Providers. Information & Management, 41(6), 685–695. doi:10.1016/j.im.2003.08.006
  • Chiu, S. I. (2014). The relationship between life stress and smartphone addiction on Taiwanese university student: A mediation model of learning self-efficacy and social self-efficacy. Computers in Human Behavior, 34, 49–57. doi: 10.1016/j.chb.2014.01.024
  • Chiu, C. M., & Wang, E. T. G., (2008). Understanding Web-based Learning Continu-ance Intention: The Role of Subjective Task Value. Information and Manage-ment, 45(3), 194–201. doi: 10.1016/j.im.2008.02.003
  • Chiu, H. C., Hsieh, Y. C., Li, Y. C., & Lee, M. (2005). Relationship marketing and consumer switching behavior. Journal of Business Research, 58(12), 1681–1689. doi:10.1016/j.jbusres.2004.11.005
  • Chiu, H. C., Hsieh, Y. C., Roan, J., Tseng, K. J., & Hsieh, J. K. (2011). The challenge for multichannel services: Cross-channel free-riding behavior. Electronic Com-merce Research and Application, 10(2), 268–277. doi:10.1016/j.elerap.2010.07.002
  • Chowdhury, T. G., Ratneshwar, S., & Desai, K. K. (2009). The role of exploratory buy-ing behavior tendencies in choices made for others. Journal of Consumer Psy-chology, 19(3), 517–525. doi:10.1016/j.jcps.2009.05.003
  • Chowdhury, H. K., Parvin, N., Weitenberner, C., & Becker, M. (2006). Consumer atti-tude toward mobile advertising in an emerging market: An empirical study. In-ternational Journal of Mobile Marketing, 1(2), 33.
  • Chuang, Y. F. (2011). Pull-and-suck effects in Taiwan mobile phone subscribers switching intentions. Telecommunication Policy, 35(2), 128–140. doi: 10.1016/j.telpol.2010.12.003
  • Chung, S., & Han, I. (2013). Factors influencing information distortion in online delib-erations: The effects of informational characteristics and regulatory focus. Com-puters in Human Behavior, 29(6), 2188–2196. doi: 10.1016/j.chb.2013.04.036
  • Chung, K. S., & Lee, J. E. (2012). Design and development of m-learning service based on 3G cellular phones. Journal of Information Process Systems, 8(3), 521–538. doi: 10.3745/JIPS.2012.8.3.521
  • Clabaugh, J. (2013). Tablet ownership reaches 40%. Washington Business Journal. Re-trieved June 22, 2014, from http://www.bizjournals.com/washington/blog/techflash/2013/04/tablet-ownership-reaches-40.html
  • Clark, W. A. V. (1986). Human Migration. Beverly Hills: Sage Publications.
  • Clark, D. E., & Knapp, T. A., & White, N. E. (1996). Personal and location-specific characteristics and elderly interstate migration. Growth & Change, 27(3), 327–351. doi:10.1111/j.1468-2257.1996.tb00909.x
  • Clough, G., Jones, A., McAndrew, P., & Scanlon, E. (2008). Informal learning with PDAs and smartphones. Journal of Computer Assisted Learning, 24(5), 359–371. doi:10.1111/j.1365-2729.2007.00268.x
  • CNN. (2011). Industry First: Smartphones Pass PCs in Sales. Fortune Industry First. Retrieved June 22, 2014, from http://tech.fortune.cnn.com/2011/02/07/idc-smartphone-shipment-numbers-passed-pc-in-q4-2010
  • Cohen, R. (1996). Theories of migration. Cheltenham, UK: E. Elgar.
  • Colwill, S. R., Aung, M., Kanitkar, V., & Holden, A. L. (2008). Towards a measure of service convenience: Multi-item scale development and empirical test. Journal of Service Marketing, 22(2), 160–169. doi: 10.1108/08876040810862895
  • comScore (2009). comScore Reports December 2009 U.S. Mobile Subscriber Market Share. comScore. Retrieved June 22, 2014, from http://www.comscore.com/Insights/Press_Releases/2010/2/comScore_Reports_December_2009_U.S._Mobile_Subscriber_Market_Share
  • comScore (2014). comScore Reports April 2014 U.S. Smartphone Subscriber Market Share. comScore. Retrieved June 22, 2014, from https://www.comscore.com/Insights/Press_Releases/2014/6/comScore_Reports_April_2014_US_Smartphone_Subscriber_Market_Share
  • Cornelis, E., Adams, L., & Cauberghe, V. (2012). The effectiveness of regulatory (in)congruent ads: the moderating role of an ad”s rational versus emotional tone. International Journal of Advertising, 31(2), 397–420. doi: 10.2501/IJA-31-2-397-420
  • Couper, M. P., Traugott, M. W., & Lamias, M. J. (2001). Web survey design and ad-ministration. The Public Opinion Quarterly, 65(2), 230–253. doi: 10.1086/322199
  • Couger, J. D., Zawacki, R. A., & Oppermann, E. B. (1979). Motivation levels of MIS managers versus those of their employees. MIS Quarterly, 3(3), 47–56. doi: 10.2307/248788
  • Cronin, J. J. & Taylor, S. A. (1992). Measuring service quality. A re-examination and extension. Journal of Marketing, 56(3), 55–68. doi: 10.2307/1252296
  • Cronin, J. J., Brady, M. K., & Hult, G. M. (2000). Assessing the effects of quality, value, and customer satisfaction on consumer behavioral intentions in service environ-ments. Journal of Retailing, 76(2), 193–218. doi:10.1016/S0022-4359(00)00028-2
  • Crowe, E., & Higgins, E. T. (1997). Regulatory focus and strategic inclinations: Promo-tion and prevention in decision making. Organizational Behavior and Human Decision Processes, 69(2), 117–132. doi:10.1006/obhd.1996.2675
  • Cusumano, M. A. (2010). Platforms and services: Understanding the resurgence of Ap-ple. Communications of the ACM, 53(10), 22–24. doi:10.1145/1831407.1831418
  • Dabholkar, P. A., & Walls, S. (1999). Service evaluation and switching behavior for ex-periential services: An empirical test of gender differences within a broader con-ceptual framework. Journal of Consumer Satisfaction, Dissatisfaction, and Com-plaining Behavior, 12, 123–137.
  • Dai, H., & Palvi, P. C. (2009). Mobile commerce adoption in China and the United States: a cross-cultural study. ACM SIGMIS Database, 40(4), 43–61. doi:10.1145/1644953.1644958
  • Dall, C., Andrus, J., Van’t Hof, A., Laadan, O., & Nieh, J. (2012). The design, imple-mentation, and evaluation of cells: A virtual smartphone architecture. ACM Transactions on Computer Systems, 30(3). doi:10.1145/2324876.2324877
  • Daryanto, A., de Ruyter, K., & Wetzels, M. (2010a). Getting a discount or sharing the cost: The influence of regulatory fit on consumer responses to service pricing schemes. Journal of Services Research, 13(2), 153–167. doi:10.1177/1094670509351566
  • Daryanto, A., de Ruyter, K., Wetzels, M., & Patterson, P. (2010b). Service firms and customer loyalty programs: A regulatory fit perspective of reward preferences in a health club setting. Journal of the Academy of Marketing Science, 38(5), 604–616. doi:10.1007/s11747-009-0165-x
  • Das, T. K., & Kumar, R. (2011). Regulatory focus and opportunism in the alliance de-velopment process. Journal of Management, 37(3), 682–708. doi: 10.1177/0149206309356325
  • de Boer, J., Hoogland, C. T., & Boersema, J. J. (2007). Towards more sustainable food choices. Values priorities and motivational orientations. Food Quality and Pref-erence, 18(7), 985–996. doi: 10.1016/j.foodqual.2007.04.002
  • De Jong, G. F., & Gardner, R. W., (1981). Introduction and Overview. In Migration Decision Making: Multidisciplinary Approaches to Microlevel Studies in Devel-oped and Developing Countries. Eds. G. E De Jong and R. W. Gardner. Elms-ford, NY: Pergamon.
  • De Jong, G. F. & Fawcett, J. T. (1981). Motivations for Migration: An Assessment and a Value-Expectancy Research Model. In Migration Decision Making: Multidisci-plinary Approaches to Microlevel Studies in Developed and Developing Coun-tries. Eds. G. E De Jong and R. W. Gardner. Elmsford, NY: Pergamon.
  • de la Vega, R., Roset, R., Castarlenas, E., Sánchez-Rodríguez, E., Solé, E., & Miró, J. (2014). Development and testing of Painometer: A smartphone app to assess pain intensity. Journal of Pain. doi: 10.1016/j.jpain.2014.04.009
  • de Lange, M. A., & van Knippenberg, A. F. M. (2009). To err is human: how regulatory focus and action orientation predict performance following errors. Journal of Experimental Social Psychology, 45(6), 1192–1199. doi: 10.1016/j.jesp.2009.07.009
  • Delone, W. H. & McLean, E. R. (1992). Information Systems Success: The quest for the dependent variable. Information Systems Research (3)1, 60–95. doi: 10.1287/isre.3.1.60
  • Deng, Z., Lu, Y., Wei, K. K., & Zhang, J. (2010). Understanding customer satisfaction and loyalty: an empirical study of mobile instant messages in China. Internation-al Journal of Information Management, 30(4), 289–300. doi: 10.1016/j.ijinfomgt.2009.10.001
  • Desai, K. K., & Trivedi, M. (2014). Do consumer perceptions matter in measuring choice variety and variety seeking. Journal of Business Research, 67(1), 2786–2792. doi: 10.1016/j.jbusres.2012.08.019
  • Desbarats, J. (1983). Spatial choice and constraints on behavior. Annals of the Associa-tion of American Geographers, 73(3), 340–357. doi: 10.1111/j.1467-8306.1983.tb01421.x
  • Desouza, K. C., Jha, S., Sangareddy, S. R. P. & Ye, C. (2006). Choosing between technology solutions: rational or irrational decision making?. IEE Engineering Management Magazine, 42–45.
  • Dess, G. G., Lumpkin, G. T., & Eisner, A. B. (2007). Strategic Management: Text and Cases, 3 ed. New York: McGraw-Hill Irwin.
  • Dillman, D. A. (2007). Mail and Internet Surveys: The Tailored Design Method – 2007 Update with New Internet, Visual, and Mixed-Mode Guide. New York: John Wiley & Sons.
  • Dioko, L. A. N., So, S. I., Harrill, R. (2013). Hotel category switching behav-ior—Evidence of mobility, stasis or loyalty. International Journal of Hospitality Management 34, 234–244. doi: 10.1016/j.ijhm.2013.04.002
  • Dorigo, G. & Tobler, W. (1983). Push-pull migration laws. Annals of the Association of American Geographers, 73(1), 1–17. doi: 10.1111/j.1467-8306.1983.tb01392.x
  • Dornan, A. (2006). Impact of consumer technology hits business world. Information Week. Retrieved June 23, 2014, from: http://www.informationweek.com/news/showArticle.jhtml?articleID=181502671
  • Drolet, A. (2002). Inherent rule variability in consumer choice: Changing rules for change”s sake. Journal of Consumer Research, 29(3), 293–305. doi: 10.1086/344433
  • Dubé, L., & Morgan, M. S. (1998). Capturing the dynamics of in-process consumption emotions and satisfaction in extended service transactions. International Journal of Research in Marketing, 15(4), 309–320. doi: 10.1016/S0167-8116(98)00009-3
  • East, R., Muchineripi, R., Outerakou, A., Grandcolas, U., & Riley, F. D. (2010). Switching service providers: Reasons, service types, and sequences. Journal of Business Research, 4(1–2).
  • Ehrenberg, A., Juckes, S., White, K. M., & Walsh, S. P. (2008). Personality and selfes-teem as predictors of young people’s technology use. CyberPsychology & Be-havior, 11(6), 739–741. doi: 10.1089/cpb.2008.0030
  • Ek, K., Söderholm, P. (2008). Households” switching behavior between electricity sup-pliers in Sweden. Utilities Policy, 16(4), 254–261. doi: 10.1016/j.jup.2008.04.005
  • Enck, W., Gilbert, P., Chun, B. G., Cox, L. P., Jung, J., McDaniel, P., & Sheth, A. N. (2014). TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones. Communications of the ACM, 57(3), 99–106. doi: 10.1145/2494522
  • Eom, S. J., & Kim, J. H. (2014). The adoption of public smartphone applications in Ko-rea: Empirical analysis on maturity level and influential factors. Government In-formation Quarterly. doi: 10.1016/j.giq.2014.01.005
  • Ezoe, S., Toda, M., Yoshimura, K., Naritomi, A., Den, R., & Morimoto, K. (2009). Re-lationships of personality and lifestyle with mobile phone dependence among female nursing students. Social Behavior and Personality, 37(2), 231–238. doi: 10.2224/sbp.2009.37.2.231
  • Fan. L., & Suh, Y. H. (2014). Why do users switch to a disruptive technology? An em-pirical study based on expectation-disconfirmation theory. Information & Man-agement, 51(2), 240–248. doi: 10.1016/j.im.2013.12.004
  • Farquhar, J. D., & Rowley, J. (2009). Convenience: a services perspective. Marketing Theory, 9(4), 425–438. doi: 10.1177/1470593109346894
  • Federal Bureau of Investigation (2006). 2005 FBI Computer Crime Survey. Federal Bureau of Investigation. Retrieved June 23, 2014, from: http://www.wheresthepaper.org/FBIccs2005.pdf
  • Fellner, B., Holler, M., Kirchler, E., & Schabmann, A. (2007). Regulatory Focus Scale (RFS): Development of a scale to record dispositional regulatory focus. Swiss Journal of Psychology, 66(2), 109–116. doi: 10.1024/1421-0185.66.2.109
  • Fernandes, D., & Mandel, N., (2014). Political conservatism and variety-seeking. Jour-nal of Consumer Psychology, 24(1), 79–86. doi: 10.1016/j.jcps.2013.05.003
  • Fielding, T. (1992a). Migration and Culture. In Migration Processes and Patterns, vol. 1: Research Progress and Prospects. Eds. Tony Champion and Tony Fielding. London: Belhaven, 201–212.
  • Fielding, T. (1992b). Migration and Social Change. In Migration Processes and Patterns, vol 1. Eds. John Stillwell, Philip Rees, and Peter Boden. London: Belhaven, 201–212.
  • Firmin, M. W., Firmin, R. L., Orient, K. M., Edwards, A. J., & Cunliff, J. M. (2012). The BlackBerry image: Self-identified perceptions and motivations associated with college student BlackBerry use. Educational Media International, 49(1), 19–32. doi: 10.1080/09523987.2012.662622
  • Flanagan, J. C. (1978). A research approach to improving our quality of life. American Psychologist, 33(2), 138–147. doi: 10.1037/0003-066X.33.2.138
  • Florack, A., & Scarabis, M. (2006). How advertising claims affect brand preferences and category-brand associations: the role of regulatory fit. Psychology and Mar-keting, 23(9), 741–755. doi: 10.1002/mar.20127
  • Florack, A., Palcu, J., & Friese, M. (2013). The moderating role of regulatory focus on the social modeling of food intake. Appetite, 69(1), 114–122. doi: 10.1016/j.appet.2013.05.012
  • Fornell, C. (1992). A National Customer Satisfaction Barometer: The Swedish Experi-ence. Journal of Marketing, 56(1), 6–21. doi: 10.2307/1252129
  • Fornell, C., Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440–452. doi: 10.2307/3151718
  • Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Un-observable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. doi: 10.2307/3151312
  • Förster, J., & Higgins, E. T. (2005). How global versus local perception fits regulatory focus. Psychological Science, 16(8), 631–636. doi: 10.1111/j.1467-9280.2005.01586.x
  • Fournier, S., & Mick, D. G. (1999). Rediscovering satisfaction. Journal of Marketing, 63(4), 5–23. doi: 10.2307/1251971
  • Fransen, M. L., Reinders, M. J., Bartels, J., & Maassen, R. L. (2010). The influence of regulatory fit on evaluation and intentions to buy genetically modified foods. The mediating role of social identification. Journal of Marketing Communica-tions, 16(1–2), 5–20. doi: 10.1080/13527260903342696
  • Fried, I., & Festa, P. (2005). Reversal: Next IE divorced from new Windows. CNET News. Retrieved June 23, 2014, from: http://news.cnet.com/Reversal-Next-IE-divorced-from-new-Windows/2100-1032_3-5577263.html
  • Fu, J. R. (2011). Understanding career commitment of IT professionals: Perspectives of push–pull–mooring framework and investment model. International Journal of Information Management, 31(3), 279–293. doi: 10.1016/j.ijinfomgt.2010.08.008
  • Ganesh, J., Arnold, M. J., & Reynolds, K. E. (2000). Understanding the customer base of service providers: An examination of the differences between switchers and stayers. Journal of Marketing, 64(3), 65–87. doi: 10.1509/jmkg.64.3.65.18028
  • Garbarino, E., & Johnson, M. J. (1999). The Different Roles of Satisfaction, Trust, and Commitment in Customer Relationships. Journal of Marketing, 63(2), 70–87. doi: 10.2307/1251946
  • Gardner, R. W. (1981). Macrolevel Influences on the Migration Decision Process. In Migration Decision Making: Multidisciplinary Approaches to Microlevel Studies in Developed and Developing Countries. Eds. Gordon E De Jong and Robert W. Gardner. Elmsford, NY: Pergamon.
  • Gartner. (2011). Gartner says worldwide mobile application store revenue forecast to surpass $15 billion in 2011. Gartner. Retrieved June 23, 2014, from: http://www.gartner.com/newsroom/id/1529214
  • Gartner. (2013). Gartner says worldwide mobile advertising revenue to reach $11.4 bil-lion in 2013. Gartner. Retrieved June 23, 2014, from: http://www.gartner.com/newsroom/id/2306215
  • Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-graph: Tutorial and annotated example. Communications of the Association for Infor-mation Systems, 16(5), 91–109.
  • Germani, G. (1965). Migration and Acculturation. In Handbook for Social Research in Urban Areas. Ed. Philip M. Hauser. Brussels, Belgium: UNESCO, 159–178.
  • Gill, T. G. (1996). Expert systems usage: Task change and intrinsic motivation. MIS Quarterly, 20(3), 301–329. doi: 10.2307/249658
  • Gillard, M., Desmette, D., & Keller, J. (2011). Regulatory focus moderates the influence of age-related stereotypic expectancies on older adults’ test performance and threat-based concerns. European Review of Applied Psychology, 61(1), 23–29. doi: 10.1016/j.erap.2010.11.001
  • Givon, M. (1984). Variety Seeking through Brand Switching. Marketing Science, 3(1), 1–22. doi: 10.1287/mksc.3.1.1
  • Glynn, R. W., O’Duffy, F., O’Dwyer, T. P., Colreavy, M. P., & Rowley, H. M. (2013). Patterns of Internet and smartphone use by parents of children attending a pedi-atric otolaryngology service. International Journal of Pediatric Otorhinolaryn-gology, 77(5), 699–702. doi: 10.1016/j.ijporl.2013.01.021
  • Gollwitzer, P. M., & Sheeran, P. (2009). Self-regulation of consumer decision making and behavior: The role of implementation intentions. Journal of Consumer Psy-chology, 19(4), 593–607. doi: 10.1016/j.jcps.2009.08.004
  • Gomez, P., Borges, A., & Pechmann, C. (2013). Avoiding poor health or approaching good health: Does it matter? The conceptualization, measurement, and conse-quences of health regulatory focus. Journal of Consumer Psychology, 23(4), 451–463. doi: 10.1016/j.jcps.2013.02.001
  • Goodhue, D. L. & Straub, D. W. (1991). Security Concerns of System Users: A Study of Perceptions of the Adequacy of Security. Information & Management, 20(1), 13–27. doi: 10.1016/0378-7206(91)90024-V
  • Goth, G. (2004). IE security flaws spike interest in alternative browsers. IEEE Internet Computing, 8(6), 8–11. doi: 10.1109/MIC.2004.1260696
  • Greenwood, M. J., Mueser, P. R., Plane, D. A., & Schlottmann, A. M. (1991). New Di-rections in Migration Research: Perspectives from Some North American Re-gional Science Disciplines. The Annals of Regional Science, 25(4), 237–270. doi: 10.1007/BF01581852
  • Grewal, D., Motyka, S., Puccinelli, N., Roggeveen, A., Daryanto, A., & de Ruyter, K., et al. (2010). A meta-analytic review of regulatory fit effects. Marketing Science Institute Research Report, 10–117.
  • Grimm, L. R., Markman, A. B., Maddox, W. T., & Baldwin, G. C. (2009). Stereotype threat reinterpreted as a regulatory mismatch. Journal of Personality and Social Psychology, 96(2), 288–304. doi: 10.1037/a0013463
  • Guielford, J. P. (1965). Fundamental Statistics in Psychology and Education. New York: McGraw-Hill.
  • Gwebu, K. L., & Wang, J. (2011). Adoption of Open Source Software: The role of so-cial identification. Decision Support Systems, 51(1), 220–229. doi: 10.1016/j.dss.2010.12.010
  • Gwinner, K. P., Gremler, D. D., & Bitner, M. J. (1998). Relational benefits in services industries: The customer”s perspective. Journal of the Academy of Marketing Science, 26(2), 101–114. doi: 10.1177/0092070398262002
  • Ha, J. H., Chin, B., Park, D. H., Ryu, S. H., & Yu, J. (2008). Characteristics of exces-sive cellular phone use in Korean adolescents. CyberPsychology & Behavior, 11(6), 783–784. doi: 10.1089/cpb.2008.0096
  • Haddington, P., & Rauniomaa, M. (2011). Technologies, multitasking, and driving: At-tending to and preparing for a mobile phone conversation in a car. Human Communication Research, 37(2), 223–254. doi: 10.1111/j.1468-2958.2010.01400.x
  • Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. doi: 10.2753/MTP1069-6679190202
  • Haj-Salem, N., Chebat, J. C. (2014). The double-edged sword: The positive and nega-tive effects of switching costs on customer exit and revenge. Journal of Business Research, 67(6), 1106–1113. doi: 10.1016/j.jbusres.2013.05.050
  • Hamka, F., Bouwman, H., de Reuver, M., & Kroesen, M. (2014). Mobile customer seg-mentation based on smartphone measurement. Telematics and Informatics, 31(2), 220–227. doi: 10.1016/j.tele.2013.08.006
  • Hamstra, M. R. W., Bolderdijk, J. W., & Veldstra, J. L. (2011). Everyday risk taking as a function of regulatory focus. Journal of Research in Personality, 45(1), 134–137. doi: 10.1016/j.jrp.2010.11.017
  • Han, H., Kim, W., & Hyun, S. S. (2011). Switching intention model development: Role of service performances, customer satisfaction, and switching barriers in the ho-tel industry. International Journal of Hospitality Management, 30(3), 619–629. doi: 10.1016/j.ijhm.2010.11.006
  • Hart, W., Albarracin, D., Eagly, A. H., Brechan, I., Lindberg, M. J., & Merrill, L. (2009). Feeling Validated Versus Being Correct: A Meta-Analysis of Selective Exposure to Information. Psychological Bulletin, 135(4), 555–588. doi: 10.1037/a0015701
  • Hawkes, C. P., Walsh, B. H., Ryan, C. A., & Dempsey, E. M. (2013). Smartphone technology enhances newborn intubation knowledge and performance amongst paediatric trainees. Resuscitation, 84(2), 223–226. doi: 10.1016/j.resuscitation.2012.06.025
  • Haws, K. L., Dholakia, U. M., & Bearden, W. O. (2010). An assessment of chronic reg-ulatory focus measures. Journal of Marketing Research, 47(5), 967–982. doi: 10.1509/jmkr.47.5.967
  • Heitz-Spann, S. (2013). Cross-channel free-riding consumer behavior in a multichannel environment: An investigation of shopping motives, sociodemographics and product categories. Journal of Retailing and Consumer Services, 20(6), 570–578. doi: 10.1016/j.jretconser.2013.07.006
  • Hennig-Thurau, T., Gwinner, K. P., & Gremler, D. D. (2002). Understanding relation-ship marketing outcomes: An integration of relational benefits and relationship quality. Journal of Service Research, 4(3), 230–247. doi: 10.1177/1094670502004003006
  • Hertzberg, R. (2007). I.T.’s Top 84 R&D Spenders. Baseline. Retrieved June 23, 2014, from: http://www.baselinemag.com/c/a/IT-Management/ITs-Top-84-RD-Spenders
  • Hess, R. L., Ganesan, S. & Klein, N. M. (2003). Service failure and recovery: The im-pact of relationship factor on customer satisfaction. Journal of the Academy of Marketing Science, 31(2), 127–147. doi: 10.1177/0092070302250898
  • Higgins, E. T. (1996). The “Self digest”: Self-knowledge serving self-regulatory func-tions. Journal of Personality and Social Psychology, 71(6), 1062–1083. doi: 10.1037//0022-3514.71.6.1062
  • Higgins, E. T. (1997). Beyond pleasure and pain. American Psychologist, 52(12), 1280–1300. doi: 10.1037/0003-066X.52.12.1280
  • Higgins, E. T. (1998). Promotion and prevention: Regulatory focus as a motivational principle. Advances in Experimental Social Psychology, 30, 1–46. doi: 10.1016/S0065-2601(08)60381-0
  • Higgins, E. T. (2012). Beyond pleasure and pain. How motivation works. NY: Oxford University Press.
  • Higgins, E. T., & Silberman, I. (1998). Development of regulatory focus: Promotion and prevention as ways of living. In J. Heckhausen & C. S. Dweck (Eds.), Motivation and self-regulation across the life span, 78–113. New York: Cambridge Univ. Press.
  • Higgins, E. T., Cesario, J., Hagiwara, N., Spiegel, S., & Pittman, T. (2010). Increasing or decreasing interest in activities: the role of regulatory fit. Journal of Personality and Social Psychology, 98(4), 559–572. doi: 10.1037/a0018833
  • Hmieleski, K. M., & Baron, R. A. (2008). Regulatory focus and new venture perfor-mance: A study of entrepreneurial opportunity exploitation under conditions of risk versus uncertainty. Strategic Entrepreneurship Journal, 2(4), 285–299. doi: 10.1002/sej.56
  • Holler, M., Hoelzl, E., Kirchler, E., Leder, S., & Mannetti, L. (2008). Framing of infor-mation on the use of public finances, regulatory fit of recipients and tax compli-ance. Journal of Economic Psychology, 29(4), 597–611. doi: 10.1016/j.joep.2008.01.001
  • Holzer, A., & Ondrus, J. (2011). Mobile application market: A developer”s perspective. Telematics and Informatics, 28(1), 22–31. doi: 10.1016/j.tele.2010.05.006
  • Homburg, C., & Giering, A. (2001). Personal characteristics as moderators of the rela-tionship between customer satisfaction and loyalty–An empirical analysis. Psy-chology & Marketing, 18(1), 43–66. doi: 10.1002/1520-6793(200101)18:1<43::AID-MAR3>3.0.CO;2-I
  • Hong, J., & Lee, A. Y. (2008). Be fit and be strong: mastering self-regulation through regulatory fit. Journal of Consumer Research, 34(5), 682–695. doi: 10.1086/521902
  • Hong, F. Y., Chiu, S. I., & Huang, D. H. (2012). A model of the relationship between psychological characteristics, smartphone addiction and use of mobile phones by Taiwanese female university students. Computer in Human Behavior, 28(6), 2152–2159. doi: 10.1016/j.chb.2012.06.020
  • Hou, A. C. Y., Chern, C. C., Chen, H. G., & Chen, Y. C. (2009). Using demographic migration theory to explore why people switch between online games. 42nd Hawaii International Conference on System Sciences, 1–9. doi: 10.1109/HICSS.2009.493
  • Hou, A. C. Y., Chern, C. C., Chen, H. G. & Chen, Y. C. (2011). ”Migrating to a new virtual world”: Exploring MMORPG switching through human migration theory. Computers in Human Behavior, 27(5), 1892–1903. doi: 10.1016/j.chb.2011.04.013
  • Hsieh, J. K. & Hsieh, Y. C. (2013). Appealing to Internet-based freelance developers in smartphone application marketplaces. International Journal of Information Man-agement, 33(2), 308–317. doi: 10.1016/j.ijinfomgt.2012.11.010
  • Hsieh, J. J. P. A., Rai, A., & Keil, M. (2008). Understanding digital inequality: compar-ing continued use behavioral models of the socio-economically advantaged and disadvantaged. MIS Quarterly, 32(1), 97–126. doi: 10.2307/25148830
  • Hsieh, J. K., Hsieh, Y. C., Chiu, H. C., & Feng, Y. C. (2012). Post-adoption Switching Behavior for Online Service Substitutes: A Perspective of the Push-Pull-Mooring Framework. Computer in Human Behavior, 28(5), 1912–1920. doi: 10.1016/j.chb.2012.05.010
  • Hsu, J. S. C. (2014). Understanding the role of satisfaction in the formation of per-ceived switching value. Decision Support Systems, 59, 152–162. doi: 10.1016/j.dss.2013.11.003
  • Hsu, C. L., & Lin, J. C. C., (2008). Acceptance of Blog Usage: The Roles of Technolo-gy Acceptance, Social Influence and Knowledge Sharing Motivation. Infor-mation and Management, 45(1), 65–74. doi: 10.1016/j.im.2007.11.001
  • Hsu, C. L., Chen, M. C., Chang, K. C., & Chao, C. M. (2010). Applying loss aversion to investigate service quality on logistics: a moderating effect on service conven-ience. International Journal of Operations and Production Management, 30(5), 508–525. doi: 10.1108/01443571011039605
  • Hu, A. W. L., & Hwang, I. S. (2006). Measuring the effects of customer switching costs on switching intention in Taiwan mobile telecommunication services. Journal of American Academy of Business, 9(1), 75–85.
  • Hu, P. J. H., Lin, C., & Chen, H. (2005). User Acceptance of Intelligence and Security Informatics Technology: A Study of COPLINK. Journal of the American Socie-ty for Information Science and Technology, 56(3), 235–244. doi: 10.1002/asi.20124
  • Hu, P. J. H., Brown, S. A., Thong, J. Y. L., Chan, F. K. Y., & Tam, K. Y. (2009). De-terminants of Service Quality and Continuance Intention of Online Service: The Case of eTax. Journal of the American Society for Information Science and Technology, 60(2), 292–306. doi: 10.1002/asi.20956
  • Huang, L. Y., & Hsieh, Y. J. (2012). Consumer electronics acceptance based on innova-tion attributes and switching costs: The case of e-book readers. Electronic Com-merce Research and Applications, 11(3), 218–228. doi: 10.1016/j.elerap.2011.12.005
  • Humphreys, L., Von Pape, T., & Karnowski, V. (2013). Evolving mobile media: Uses and conceptualizations of the mobile internet. Journal of Computer-Mediated Communication, 18(4), 491–507. doi: 10.1111/jcc4.12019
  • Hung, S. Y., Ku, C. Y., & Chang, C. M. (2003). Critical factors of wap services adop-tion: and empirical study. Electronic Commerce Research and Applications, 2(1), 42–60. doi: 10.1016/S1567-4223(03)00008-5
  • Hung, S. Y., Chang, C. M., & Kuo, S. R. (2013). User acceptance of mobile e-government services: An empirical study. Government Information Quarterly, 30(1), 33–44. doi: 10.1016/j.giq.2012.07.008
  • Idson, L. C., Liberman, N., & Higgins, T. E. (2000). Distinguishing gains from nonloss-es and losses from nongains: A regulatory focus perspective on hedonic intensity. Journal of Experimental Social Psychology, 36(3), 252–274. doi: 10.1006/jesp.1999.1402
  • Im, I., Hong, S., & Kang, M. S. (2011). An International Comparison of Technology Adoption: Testing the UTAUT model. Information and Management, 48(1), 1–8. doi: 10.1016/j.im.2010.09.001
  • Inman, J. J. (2001). The role of sensory-specific satiety in attribute-level variety seeking. Journal of Consumer Research, 28(1), 105–120. doi: 10.1086/321950
  • Ip, R. K. F., & Wagner, C. (2008). Weblogging: A Study of Social Computing and Its Impact on Organizations. Decision Support Systems, 45(2), 242–250. doi: 10.1016/j.dss.2007.02.004
  • Jackson, J. A. (1986). Migration. In Aspects of Modern Sociology: Social Processes, Longman, London and New York.
  • Jain, S. P., Lindsey, C., Agrawal, N., & Maheswaran, D. (2007). For better or for worse? Valenced comparative frames and regulatory focus. Journal of Consumer Re-search, 34(1), 57–65. doi: 10.1086/513046
  • Jamaluddin, J., Zotou, N., & Coulton, P. (2004). Mobile phone vulnerabilities: a new generation of malware. In: IEEE International Symposium on Consumer Elec-tronics, 199–202. doi: 10.1109/ISCE.2004.1375935
  • Jasperson, J., Carter, P. E., & Zmud, R. W. (2005). A Comprehensive Conceptualization of Post-Adoptive Behaviors Associated with Information Technology Enabled Work Systems. MIS Quarterly, 29(3), 525–557.
  • Jin, S. A. A. (2012). To disclose or not to disclose, that is the question": A structural equation modeling approach to communication privacy management in E-health. Computers in Human Behavior, 28(1), 69–77. doi: 10.1016/j.chb.2011.08.012
  • Joireman, J., Shaffer, M. J., Balliet, D., & Strathman, A. (2012). Promotion orientation explains why future-oriented people exercise and eat healthy. Evidence from the two-factor Consideration of Future Consequences–14 Scale. Personality and So-cial Psychology Bulletin, 38(10), 1272–1287.
  • Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2000). Switching barriers and re-purchase intentions in service. Journal of Retailing, 76(2), 259–274. doi: 10.1016/S0022-4359(00)00024-5
  • Jones, M. A., Mothersbaugh, D. L., & Beatty, S. E. (2002). Why customers stay: Meas-uring the underlying dimensions of services switching costs and managing their differential strategic Outcomes. Journal of Business Research, 55(6), 441–450. doi: 10.1016/S0148-2963(00)00168-5
  • Jones, M. A., Reynolds, K. E., Mothersbaugh, D. L., & Beatty, S. E. (2007). The Posi-tive and Negative Effects of Switching Costs on Relational Outcomes. Journal of Service Research, 9(4), 335–355. doi: 10.1177/1094670507299382
  • Jost, J. T., Glaser, J., Kruglanski, A. W., & Sulloway, F. J. (2003). Political conservatism as motivated social cognition. Psychological Bulletin, 129(3), 339–375. doi: 10.1037/0033-2909.129.3.339
  • Jost, J. T., Napier, J. L., Thorisdottir, H., Gosling, S. D., Palfai, T. P., & Ostafin, B. (2007). Are needs to manage uncertainty and threat associated with political conservatism or ideological extremity?. Personality and Social Psychology Bulle-tin, 33(7), 989–1007. doi: 10.1177/0146167207301028
  • Jung, J., Chan-Olmsted, S. M., & Kim, Y. (2013). From access to utilization: Factors affecting smartphone application use and its impacts on social and human capital acquisition in South Korea. Journalism and Mass Communication Quarterly, 90(4), 715–735. doi: 10.1177/1077699013503163
  • Kahn, B. E., & Raju, J. (1991). Effects of price promotions on variety-seeking and rein-forcement behavior. Marketing Science, 10(4), 316–337. doi: 10.1287/mksc.10.4.316
  • Kalkbrenner, J., & McCampbell, A. (2011). The advent of smartphones: A study on the effect of handheld electronics on personal and professional productivity. Journal of Applied Global Research, 4(8), 1–9.
  • Kang, S., & Jung, J. (2014). Mobile communication for human needs: A comparison of smartphone use between the US and Korea. Computers in Human Behavior, 35, 376–387. doi: 10.1016/j.chb.2014.03.024
  • Kang, Y. S., & Lee, H. (2010). Understanding the role of an IT artifact in online service continuance: An extended perspective of user satisfaction. Computers in Human Behavior, 26(3), 353–364. doi: 10.1016/j.chb.2009.11.006
  • Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adop-tion across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23(2), 183–213. doi: 10.2307/249751
  • Karikoski, J., & Soikkeli, T. (2013). Contextual usage patterns in smartphone communi-cation services. Personal and Ubiquitous Computing, 17(3), 491–502. doi: 10.1007/s00779-011-0503-0
  • Kay, R. H., & Lauricella, S. (2011). Gender differences in the use of laptops in higher education: A formative analysis. Journal of Educational Computing Research, 44(3), 361–380. doi: 10.2190/EC.44.3.f
  • Keaveney, S. M. (1995). Customer switching behavior in service industries: An explor-atory study. Journal of Marketing, 59(2), 71–82. doi: 10.2307/1252074
  • Keaveney, S. M., & Parthasarathy, M. (2001). Customer switching behavior in online services: An exploratory study of the role of selected attitudinal, behavioral, and demographic factors. Journal of the Academy of Marketing Science, 29(4), 374–390. doi: 10.1177/03079450094225
  • Keeling, D. I., Daryanto, A., de Ruyter, K., & Wetzels, M. (2013). Take it or leave it: Using regulatory fit theory to understand reward redemption in channel reward programs. Industrial Marketing Management, 42(8), 1345–1356. doi: 10.1016/j.indmarman.2013.07.005
  • Kees, J., Burton, S., & Tangari, A. H. (2010). The impact of regulatory focus, temporal orientation, and fit on consumer responses to health-related advertising. Journal of Advertising, 39(1), 19–34. doi: 10.2753/JOA0091-3367390102
  • Keil, M., Tan, B. C. Y., Wei, K. K., Saarinen, T., Tuunainen, V., & Wassenaar, A. (2000). A cross-cultural study on escalation of commitment behavior in software projects. MIS Quarterly, 24(2), 299–325. 10.2307/3250940
  • Keller, P. A. (2006). Regulatory focus and efficacy of health messages. Journal of Con-sumer Research, 33(1), 109–114. doi: 10.1086/504141
  • Khajehzadeh, S., Oppewal, H., & Tojib, D. (2014). Consumer responses to mobile cou-pons: The roles of shopping motivation and regulatory fit. Journal of Business Research. doi: 10.1016/j.jbusres.2014.02.012
  • Kibelloh, M., & Bao, Y. (2013). Can online MBA programms allow professional work-ing mothers to balance work, family, and career progression? A case study in China. The Asia-Pacific Education Researcher, 23(2), 249–259. doi: 10.1007/s40299-013-0101-1
  • Kim, J. A. (2006). Toward an Understanding of Web-based Subscription Database Ac-ceptance. Journal of the American Society for Information Science and Technol-ogy, 57(13), 1715–1728. doi: 10.1002/asi.20355
  • Kim, H. S., & Drolet, A. (2003). Choice and self-expression: A cultural analysis of vari-ety-seeking. Journal of Personality and Social Psychology, 85(2), 373–382. doi: 10.1037/0022-3514.85.2.373
  • Kim, Y. J., & Han, J. Y. (2014). Why smartphone advertising attracts customers: A model of web advertising, flow, and personalization. Computers in Human Be-havior, 33, 256–269. doi: 10.1016/j.chb.2014.01.015
  • Kim, J. H., & Jang, S. C. (2014). The fading affect bias: Examining changes in affect and behavioral intentions in restaurant service failures and recoveries. Interna-tional Journal of Hospitality Management, 40, 109–119. doi: 10.1016/j.ijhm.2014.03.011
  • Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of continued IS use: An in-tegrative view of four mechanisms underlying postadoptioin phenomena. Man-agement Science, 51(5), 741–755. doi: 10.1287/mnsc.1040.0326
  • Kim, S. S., & Son, J. Y. (2009). Out of dedication or constraint? A dual model of post-adoption phenomena and its empirical test in the context of online services. MIS Quarterly, 33(1), 49–70.
  • Kim, H. W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: An empirical investigation. Decision Support Systems, 43(1), 111–126. doi: 10.1016/j.dss.2005.05.009
  • Kim, J. W., James, J. D., & Kim, Y. K. (2013). A model of the relationship among sport consumer motives, spectator commitment, and behavioral intentions. Sport Management Review, 16(2), 173–185. doi: 10.1016/j.smr.2012.08.004
  • Kim, E. E. Y., Kang, J., & Mattila, A. S. (2012). The impact of prevention versus pro-motion hope on CSR activities. International Journal of Hospitality Management, 31(1), 43–51. doi: 10.1016/j.ijhm.2011.05.004
  • Kim, G. M., Shin, B., & Lee, H. G. (2006). A study of factors that affect user intentions toward email service switching. Information & Management, 43(7), 884–893. doi:10.1016/j.im.2006.08.004
  • Kirmani, A., & Zhu, R. (2007). Vigilant against manipulation: The effect of regulatory focus on the use of persuasion knowledge. Journal of Marketing Research, 44(4), 688–701. doi: 10.1509/jmkr.44.4.688
  • Klemperer, P. (1987). Market with consumer switching costs. The Quarterly Journal of Economic, 102(2), 375–394. doi: 10.2307/1885068
  • Ko, E., Kim, E. Y., & Lee, E. K. (2009). Modeling consumer adoption of mobile shop-ping for fashion products in Korea. Psychology and Marketing, 26(7), 669–687. doi: 10.1002/mar.20294
  • Koenig, A. M., Cesario, J., Molden, D. C., Kosloff, S., & Higgins, E. T. (2009). Inci-dental experiences of regulatory fit and the processing of persuasive appeals. Personality and Social Psychology Bulletin, 35(10), 1342–1355. doi: 10.1177/0146167209339076
  • Kopytoff, V. G. (2011). Blogs wane as the young drift to sites like Twitter. The New York Times. Retrieved June 23, 2014, from: http://www.nytimes.com/2011/02/21/technology/internet/21blog.html.
  • Krebs, B. (2004). Virus Designed to Steal Windows Users’ Data. The Washington Post. Retrieved June 23, 2014, from: http://www.washingtonpost.com/wp-dyn/articles/A6746-2004Jun25.html
  • Kruglanski, A. W., Thompson, E. P., Higgins, E. T., Atash, M. N., Pierro, A., Shah, J. Y., et al. (2000). To ‘do the right thing’ or to ‘just do it’: locomotion and as-sessment as distinct self-regulatory imperatives. Journal of Personality and So-cial Psychology, 79(5), 793–815. doi: 10.1037/0022-3514.79.5.793
  • Kulviwat, S., Bruner II, G. C., & Al-Shuridah, O. (2009). The role of social influence on adoption of high tech innovations: The moderating effect of public/private con-sumption. Journal of Business Research, 62(7), 706–712. doi: 10.1016/j.jbusres.2007.04.014
  • Kumar, V., & Leone, R. P. (1988). Measuring the effect of retail store promotions on brand and store substitution. Journal of Marketing Research, 25(2), 178–185. doi: 10.2307/3172649
  • Kuo, Y. F., Wu, C. M., & Deng, W. J. (2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in Human Behavior, 25(4), 887–896. doi: 10.1016/j.chb.2009.03.003
  • Kwon, T., & Na, S. (2014). TinyLock: Affordable defense against smudge attacks on smartphone pattern lock systems. Computers & Security, 42, 137–150. doi: 10.1016/j.cose.2013.12.001
  • Kwon, Y., Kang, K., & Bae, C. (2014). Unsupervised learning for human activity recognition using smartphone sensors. Expert Systems with Applications, 41(14), 6067–6074. doi: 10.1016/j.eswa.2014.04.037
  • La Polla, M., Martinelli, F., & Sgandurra, D. (2013). A survey on security for mobile devices. Communication Survey & Tutorials IEEE, 15(1), 446–471. doi: 10.1109/SURV.2012.013012.00028
  • Lanaj, K., Chang, C. H. D., & Johnson, R. E. (2012). Regulatory focus and work-related outcomes: A review and meta-analysis. Psychological Bulletin, 138(5), 998–1034. doi: 10.1037/a0027723
  • Lanaj, K., Johnson, R. E., & Barnes, C. M. (2014). Beginning the workday yet already depleted? Consequences of late-night smartphone use and sleep. Organizational Behavior and Human Decision Processes, 124(1), 11–23. doi: 10.1016/j.obhdp.2014.01.001
  • Lattin, J. M., & McAlister, L. (1985). Using a variety-seeking model to identify substi-tute and complementary relationships among competing models. Journal of Marketing Research, 22(3), 330–339.
  • Law, K. S., Wong, C. S., & Mobley, W. H. (1998). Toward a taxonomy of multidimen-sional constructs. Academy of Management Review, 23(4), 741–755. doi: 10.5465/AMR.1998.1255636
  • Leder, S., Mannetti, L., Hölzl, E., & Kirchler, E. (2010). Regulatory fit effects on per-ceived fiscal exchange and tax compliance. The Journal of Socio-Economics, 39(2), 271–277. doi: 10.1016/j.socec.2009.12.003
  • Lee, E. S. (1966). A theory of migration. Demography, 3(1), 47–57.
  • Lee, A. Y. (2009). Engaging the consumer: The opposing forces of regulatory nonfit versus fit. Journal of Consumer Psychology, 19(2), 134−136. doi: 10.1016/j.jcps.2009.02.006
  • Lee, S. Y. (2014). Examining the factors that influence early adopters’ smartphone adoption: The case of college students. Telematics and Informatics, 31(2), 308–318. doi: 10.1016/j.tele.2013.06.001
  • Lee, B. G., & Chung, W. Y. (2012). A smartphone-based driver safety monitoring sys-tem using data fusion. Sensors. 12(12), 17536–17552. doi: 10.3390/s121217536
  • Lee, M., & Cunningham, L. F. (2001). A cost/benefit approach to understanding service loyalty. The Journal of Services Marketing, 15(2), 113–123. doi: 10.1108/08876040110387917
  • Lee, A. Y., & Semin, G. R. (2009). Culture through the lens of self-regulatory orienta-tions. In: Wyer R, Hong Y, Chiu CY, editors. Understanding culture: theory, research and application. New York: Psychology Press; 2009. 291–301.
  • Lee, M., Bak, C., & Lee, J. W. (2014). A prediction and auto-execution system of smartphone application services based on user context-awareness. Journal of Systems Architecture. doi: 10.1016/j.sysarc.2014.04.001
  • Lee, M. K. O., Cheung, C. M. K., & Chen, Z. (2007). Understanding User Acceptance of Multimedia Messaging Services: An Empirical Study. Journal of the American Society for Information Science and Technology, 58(13), 2066–2077. doi: 10.1002/asi.20670
  • Lee, J., Lee, J., & Feick, L. (2001). The impact of switching costs on the customer satis-faction-loyalty link: Mobile phone service in France. The Journal of Services Marketing, 15(1), 35–48. doi: 10.1108/08876040110381463
  • Lee, K. W., Tsai, M. T., & Lanting, M. C. L. (2011). From marketplace to marketspace: Investigating the consumer switch to online banking. Electronic Commerce Re-search and Applications, 10(1), 115–125. doi: 10.1016/j.elerap.2010.08.005
  • Leikas, S., Lindeman, M., Roininen, K., & Lähteenmäki, L. (2009). Boundaries of regu-latory fit: is it the thought that counts?. Basic and Applied Social Psychology, 31(4), 289–294. doi: 10.1080/01973530903316757
  • Lemish, D., & Cohen, A. A. (2005). Tell me about your mobile and I will tell you who you are: Israelis talk about themselves. Mobile communications Computer Sup-ported Cooperative Work, 31, 187–202. doi: 10.1007/1-84628-248-9_12
  • Lewis, G. J. (1982). Human Migration: A Geographical Perspective. London and Can-berra, Australia: Croom Helm.
  • Li, D., & Walejko, G. (2008). Splogs and Abandoned Blogs: The Perils of Sampling Bloggers and Their Blogs. Information, Communication and Society, 11(2), 279–296. doi: 10.1080/13691180801947976
  • Li, D., Browne, G. J., & Wetherbe, J. C. (2007). Online consumers’ switching behavior: a buyer-seller relationship perspective. Journal of Electronic Commerce in Or-ganizations, 5(1), 30–42. doi: 10.4018/978-1-60566-126-1.ch002
  • Liang, D., Ma, Z., & Qi, L. (2013). Service quality and customer switching behavior in China”s mobile phone service sector. Journal of Business Research, 66(8), 1161–1167. doi: 10.1016/j.jbusres.2012.03.012
  • Liberman, N., Molden, D. C., Idson, L. C., & Higgins, E. T. (2001). Promotion and prevention focus on alternative hypotheses: Implications for attributional func-tions. Journal of Personality and Social Psychology, 80, 5–18.
  • Limayem, M., Hirt, S. G., & Cheung, C. M. K. (2007). How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Quar-terly, 31(4), 705–737.
  • Lin, W. B. (2010). Service failure and consumer switching behaviors: Evidence from the insurance industry. Expert Systems with Applications, 37(4), 3209–3218. doi: 10.1016/j.eswa.2009.09.059
  • Lin, C. P., & Bhattacherjee, A. (2008). Elucidating individual intention to use interac-tive information technologies: The role of network externalities. International Journal of Electronic Commerce, 13(1), 85–108. doi: 10.2753/JEC1086-4415130103
  • Lin, K. Y., & Lu, H. P. (2011). Why People Use Social Networking Sites: An Empirical Study Integrating Network Externalities and Motivation Theory. Computers in Human Behavior, 27(3), 1152–1161. doi: 10.1016/j.chb.2010.12.009
  • Lin, H. F., & Shen, F. (2012). Regulatory focus and attribute framing: evidence of compatibility effects in advertising. International Journal of Advertising, 31(1), 169–188.
  • Lin, J., Chan, H. C., Wei, K. K. (2006). Understanding competing application usage with the theory of planned behavior. Journal of the American Society for Infor-mation Science and Technology, 57(10), 1338–1349. doi: 10.1002/asi.20453
  • Lin, Y. C., Chang, C. C. A., & Lin, Y. F. (2012). Self-construal and regulatory focus in-fluences on persuasion: The moderating role of perceived risk. Journal of Busi-ness Research, 65(8), 1152–1159. doi: 10.1016/j.jbusres.2011.08.001
  • Ling, R. (2005). Mobile communication vis-a` -vis teen emancipation, peer group inte-gration and deviance. In: R. Harper, A. Taylor, and L. Palen, eds. The inside text: social perspectives on SMS in the mobile age. London: Klewer.
  • Liu, B. S. C., Furrer, O., & Sudharshan, D. (2001). The Relationships between Cultures and Behavioral Intentions toward Services?” Journal of Service Research, 4(2), 118–129.
  • Liu, C. L. E., Sinkovics, R. R., Pezderka, N., & Haghirian, P. (2012). Determinants of consumer perceptions toward mobile advertising — A comparison between Ja-pan and Austria. Journal of Interactive Marketing, 26(1), 21–32. doi: 10.1016/j.intmar.2011.07.002
  • Longino, C. F. (1992). The forest and the trees: micro-level considerations in the study of geographic mobility in old age. In Rogers. A (Ed.), Elderly Migration and Population Redistribution, Bellhaven, London, 23–34.
  • Lockwood, P., Chasteen, A. L., & Wong, C., (2005). Age and regulatory focus deter-mine preferences for health-related role models. Psychology and Aging, 20(3), 376–389. doi: 10.1037/0882-7974.20.3.376
  • Lockwood, P., Jordan, C. H., & Kunda, Z. (2002). Motivation by positive and negative role models: Regulatory focus determines who will best inspire us. Journal of Personality and Social Psychology, 83(4), 854–864. doi: 10.1037/0022-3514.83.4.854
  • Low, B., & Johnston, W. J. (2006). Relationship equity and switching behaviour in the adoption of new telecommunication services. Industrial Marketing Management, 35(6), 676–689. doi: 10.1016/j.indmarman.2005.05.007
  • Lu, J., Liu, C., Yu, C. S., & Wang, K. (2008). Determinants of accepting wireless mo-bile data services in China. Information & Management, 45(1), 52–64. doi: 10.1016/j.im.2007.11.002
  • Lui, S. M. (2005). Impacts of information technology commoditization: selected studies from ubiquitous information service. in Department of Information and Systems Management. Hong Kong: Hong Kong University of Science and Technology, 139.
  • Malhotra, N. K., Kim, S. S., & Patil, A. (2006). Common Method Variance in IS Re-search: A Comparison of Alternative Approaches and a Reanalysis of Past Re-search. Management Science, 52(12), 1865–1883. doi: 10.1287/mnsc.1060.0597
  • Mansfield, S. (2013). Q & A: Colin Tankard – raising security awareness. Network Secu-rity, 6, 16–19.
  • Markovits, Y., Boer, D., & van Dick, R. (2014). Economic crisis and the employee: The effects of economic crisis on employee job satisfaction, commitment, and self-regulation. European Management Journal, 32, 413–422. doi: 10.1016/j.emj.2013.09.005
  • Markovits, Y., Ullrich, J., van Dick, R., & Davis, A. J. (2008). Regulatory foci and or-ganizational commitment. Journal of Vocational Behavior, 73, 485–489. doi: 10.1016/j.jvb.2008.09.004
  • Marshall, R., Huan, T. C., Xu, Y., & Nam, I. (2011). Extending prospect theory cross-culturally by examining switching behavior in consumer and busi-ness-to-business contexts. Journal of Business Research, 64(8), 871–878. doi: 10.1016/j.jbusres.2010.09.009
  • Maxham III, J. G., & Netemeyer, R. G. (2002). A Longitudinal Study of Complaining Customers’ Evaluations of Multiple Service Failures and Recovery Efforts. Journal of Marketing, 66 (4), 57–71.
  • Mazursky, D., LaBarbera, P., & Aiello, A. (1987). When Consumers Switch Brands. Psychology & Marketing, 4 (1), 17–30.
  • McAlister, L., & Pessemier, E. (1982). Variety seeking behavior: An interdisciplinary re-view. Journal of Consumer Research, 9, 311–322.
  • McCarthy, P. S., Kannan, P. K., Chandrasekharan, R. & Wright, G. P. (1992). Estimat-ing Loyalty and Switching with an Application to the Automobile Market”, Management Science, 38, (10), 1371–1392.
  • McDougall, G. H. G. & Levesque, T. (2000). Customer Satisfaction With Services: Put-ting Perceived Value Into the Equation?” Journal of Services Marketing, 14 (5), 392–410.
  • McElroy, J. C., Hendrickson, A. R., Townsend, A. M., & DeMarie, S. M. (2007). Dis-positional Factors in Internet Use: Personality versus Cognitive Style. MIS Quarterly, 31 (4), 809–820.
  • McHugh, K. E., Hogan, T. D., & Happel, S. K. (1995). Multiple Residence and Cyclical Migration: A Life Course Perspective. The Professional Geographer, 47 (3), 251–267.
  • McKay-Nesbitt, J., Bhatnagar, N., & Smith, M. C. (2013). Regulatory fit effects of gender and marketing message content. Journal of Business Research, 66, 2245–2251.
  • McMillan, R. (2004). Mozilla gains on IE. PCWorld. Retrieved September 10, 2014 from http://www.pcworld.com/article/116848/article.html
  • Meeker, M. (2014). Internet Trends 2014, Kleiner Perkins Caufield & Byers, retrieved at June 4, 2014 from http://www.kpcb.com/internet-trends
  • Menon, S., & Kahn, B. E. (1995). The impact of context on variety seeking in product choices. Journal of Consumer Research, 22, 285–295.
  • Micu, C. C., & Chowdhury, T. G. (2010). The effect of message”s regulatory focus and product type on persuasion. Journal of Marketing Theory and Practice, 18, 181–190.
  • Mittal, V., Ross, W. T. Jr., & Baldasare, P. M. (1998). The Asymmetric Impact of Nega-tive and Positive Attribute-Level Performance on Overall Satisfaction and Re-purchase Intentions. The Journal of Marketing, 62 (1), 33–47.
  • Mobithinking. (2013). http://mobithinking.com/blog/mobile-advertising-statistics-2013, Accessed September 10, 2014.
  • Mohan, G., Sivakumaran, B., & Sharma, P. (2012). Store Environment”s Impact on Va-riety Seeking Behavior. Journal of Retailing and Consumer Services, 19, 419–428.
  • Moon, B. (1995). Paradigm in migration research: exploring ”moorings” as a schema. Progress in Human Geography, 19, 504–524.
  • Moore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192–222.
  • Motyka, S., Grewal, D., Puccinelli, N. M., Roggeveen, A. L., Avnet, T., Daryanto, A., de Ruyter, K., & Wetzels, M. (2013). Regulatory fit: A meta-analytic synthesis. Journal of Consumer Psychology. doi: 10.1016/j.jcps.2013.11
  • 来源:中山大学;作者:潘民伟
    文懂论文-重复率修改第一品牌,http://www.szwox.com解决论文查重论文降重复,重复率高等各种论文难题的专家

    最新文章

    • 什么是学术不端行为
      什么是学术不端行为
      什么是学术不端行为 1992 年,由美国国家科学院、国家工程院和国家医学研究院组成的 22 位...
    • 论文降重复服务 1. 本网站及服务 szwox.com提供哪些服务? szwox.com是一个...

    联络我们

    QQ: 767326772
    文懂论文
    网站:http://www.szwox.com/
    E-mail: turuinit@foxmail.com

    我们的服务

    我们提供毕业论文、期刊论文、硕士论文、博士论文、会议论文格式排版,论文查重,重复率修改等服务。强大论文查重系统,一手老师资源,首创安全保密查重修改流程。充分保障客户论文查重安全以及修改后的品质,赢得了老师和同学们的信任和口碑。